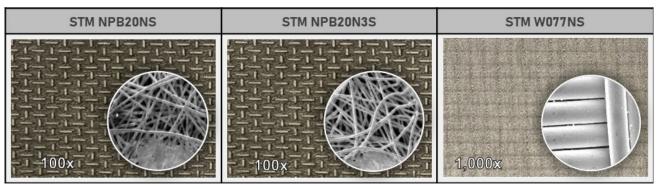
PD-1055 Architectural Shielding Case Study


Objective

To develop and execute a testing plan to replicate a structure to be built in accordance with ICD/ICS-705 and the IC Tech Spec v1.5.1 and to test various shielding materials and installation methods therein. Using this data, the objective is to provide a list of viable materials, installation methods, and their corresponding shielding effectiveness as indicated by the completion of the testing plan.

Shielding Materials

Base materials tested include:

- STM NPB20NS Electrically Conductive Non-Woven Point Bonded Fabric, Ni Ag Coated, 36" wide
- STM NPB20N3S Enhanced Electrically Conductive Non-Woven Point Bonded Fabric, Ni Ag Coated, 36" wide
- STM W077NS Electrically Conductive Nylon Rip Stop, Ni Ag Coated, 36" wide

Note: The images above are included to provide an approximate visual representation of the shielding materials used in this project. The 100x magnification of the non-woven materials and 1,000x magnification of the rip stop material are included to demonstrate the complete encapsulation of each fiber that is achieved with STM's proprietary EnCap™ metalization process.

Test Methodology

Multiple test procedures are utilized to characterize, test and validate various shielding materials and installation methods. Note: Complete test methodology (procedures and instrumentation) available by request.

Phase 1 – Shielding Materials Characterization

Materials:

- STM NPB20NS
- STM NPB20N3S
- STM W077NS
- Covertech rFoil® Ultra NT

Test Method & Frequency Range:

- ASTM D4935 (split coaxial)
 - 30 MHz 1.5 GHz
- Free-space transmission tunnel
 - 2 18 GHz

Phase 2 – Seaming and Attachment Methods

Seaming/Attachment:

- Overlaps (multiple widths)
- · Pressure sensitive adhesive
- Spray adhesive
- Staples
- Foil tape

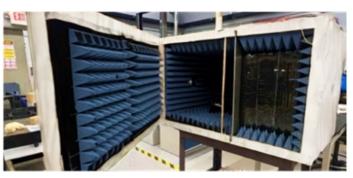
Test Method & Frequency Range:

- Free-space transmission tunnel
 - 2 18 GHz

Structure Installations Installations:

13 installation configurations

· Based on down-selection


Test Method & Frequency Range:

Phase 3 - Mock ICD-705 Test

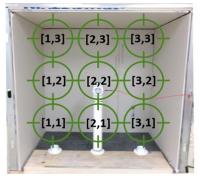
- Free-space transmission
 - 2 18 GHz

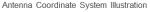
STM split coaxial testing fixture

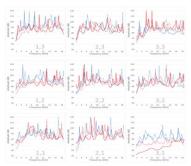
STM free-space transmission loss testing fixture

The information contained herein is confidential and proprietary to Swift Textile Metalizing, LLC. The recipient shall only disclose the Proprietary

PD-1055 Architectural Shielding Case Study






STM Mock ICD-705 Test Structure

Many of the thirteen shielding material configurations are measured at multiple stages of the installation. Depicted above are multiple stages along the installation process: pre-installation, mid-installation, and post-installation. For example, a first test cycle is performed on the base material installation. A second test cycle is performed after seams are taped using foil tape (center). A final test cycle is performed after adding a second layer of drywall over the shielding material configuration (right). STM NPB20N3S — Enhanced Electrically

An antenna coordinate system is used to catalogue the free-space transmission loss measurements at nine (9) distinct locations in the test structure in both the V and H polarizations, for a total of 18 measurements per test cycle.

Sample Data Set Illustration

Phase 3 Test Data on Mock ICD-705 Configurations

Sample	Configuration	Avg Attenuation (dB)	Min Attenuation (dB)
W077NS	PSA+FT+DW	64	55
W077NS	Staples+FT+	80	68
	W077NS		
	Backed DW		
NPB20NS	Backed DW	76	63
	w/wings		
NPB20N3S	Flash+FT+DW	76	69
DOA - December Constitute Address to			

PSA = Pressure Sensitive Adhesive FT = Foil Tape

DW = Drywall

The data sets across all 9 locations, and two polarizations, are averaged to provide an average attenuation. Signal attenuation has been made positive for ease of viewing, but is measured as a negative value indicating signal loss / attenuation.

A full copy of the report and / or relevant summarized sections can be made available upon request.